máy bơm nước hỏa tiễn công ty in ấn https://duan-knparadise.com/ Bơm nước hỏa tiễn bóp da nam Túi nilon PP cong ty in bieu mau
Wall of ice -Một biện pháp thi công mới - Diễn đàn của các kỹ sư kết cấu Việt Nam










































































Features
Go Back   Diễn đàn của các kỹ sư kết cấu Việt Nam > GIỚI THIỆU CÁC CÔNG TRÌNH > Các công trình nổi tiếng thế giới
Tên thành viên
Mật mã
Tin HOT Thông tin BQT diễn đàn

Result  Reload Thống Kê - Diễn đàn của các kỹ sư kết cấu Việt Nam
All Forums | Thông báo | Văn Bản Pháp Luật | Văn Hóa Văn Nghệ Giao Lưu
Please wait...
Please wait...
Loading...
Trả lời
 
Ðiều Chỉnh Xếp Bài
Old 17-12-2009   #1
co1972nguyen
Super Moderator
 
co1972nguyen's Avatar
 
Tham gia ngày: May 2006
Nơi Cư Ngụ: Gò Vấp-HCM
Bài gởi: 3,261
Thanks: 710
Thanked 5,067 Times in 1,289 Posts
Default Wall of ice -Một biện pháp thi công mới


Vừa qua tôi có xem phim về quá trình xây dựng nhà máy LHC này, trong quá trình thi công họ có xử lý mạch nước ngầm áp lực mạnh, ở sâu bằng cách dùng bức tường đá (wall of ice) và thấy đây là ý tưởng hay có bài viết bằng tiếng Anh kèm theo
Bác nào biết và có tài liệu về biện pháp này cho xin tham khảo, trao đồi thêm

Chùm proton đã “lên đường” trong máy gia tốc LHC
Bài viết cập nhật lúc: 03:24 ngày 23/11/2009
Khoảng 10 giờ tối thứ sáu, 20/11/2009, bên ngoài thành phố Geneve, các nhà khoa học của Trung tâm Nghiên cứu Hạt nhân châu Âu, viết tắt là CERN, đã thành công trong việc phóng một chùm proton theo chiều kim đồng hồ vào “con đường đua” từ tính, đặt ngầm dưới mặt đất dài 17 dặm, của chiếc máy gia tốc hạt LHC, một thiết bị nghiên cứu vật lý lớn nhất và đắt nhất thế giới.

Constructing a cavern for a giant

Between 1998 and 2005 a total of almost 250,000 m3 of soil and rock was excavated from the CMS site at “Point 5” of the LHC, in Cessy. The contractors - Seli, an Italian company and Dragados, Spanish - had previously worked on the Madrid metro but here faced some unique surprises.

It started with an unexpected find: “We did trial pits around the site, because the archaeology of an area is always something we have to consider, and what we found was great – a Roman villa, complete with pots, tiles and coins,” explains John Osborne, project manager of CMS civil engineering. “And even better for us was that it wasn’t anywhere near any planned shafts or buildings.”

They were able to leave archaeologists to spend a year thoroughly investigating the site whilst the project got underway. But it wasn’t an easy task. “Funnily enough Point 5 was one of he worst places possible to build the cavern in terms of geology, though best from a physics point of view. And CMS was pretty much the only experiment that could cope with being built here,” remarks John.

The first challenge came in the form of underground water tables approximately ten to twenty metres below the surface. To dig down through them the team had to first freeze the ground around the shafts to act as a barrier to the water. By drilling holes around each shaft’s circumference and pumping down brine, cooled to -25oC, the water froze into a 3-metre wall of ice. But the water coming from Cessy was moving even faster than predicted, and combined with the channelling effect of water between the two shafts, pressure built up until it penetrated the walls.

“Injecting the holes with liquid nitrogen at -195oC finally solved the problem.”

Injecting the holes with an even colder substance: liquid nitrogen, at less than at -195oC, finally solved the problem. With its help engineers formed a wall of ice around the shafts that was solid-enough for teams to keep on digging.

However, the problems were not over yet. Once the shafts were dug out, work had to begin on the caverns, but because the ground materials were so soft, with no intervention any cavern excavated would collapse. “At Point 5 there is only 15 metres of solid rock. For the first 75 metres of digging down it’s just a type of glacial deposit called moraine - basically a mixture of sand and gravel,” explains John. “And the rock we did have was a kind of soft sandstone called Molasse. A large cavern built in this would just collapse.”

The solution was to build a large supporting structure underground that could hold up the caverns and withstand the mass of the soil above it. Engineers envisaged a concrete pillar as the divider between the two caverns that could do just this.

“Knowing we would have to build this structure anyway, we asked radiation teams how thick we’d need it to be to protect people from radiation in the cavern next-door to the experiment,” explains John. “They gave the figure at 7 metres. The width needed to ensure adequate support for the caverns was 7.2 metres, so this worked out very well, and in fact the second cavern can now be safely used when the machine is on.”

After the these delays, engineers experimented with using explosives to clear away rock at a faster rate, but in the end it had little benefit for a big disruption. Instead the best trick seemed to be to excavate small sections at a time and immediately install “shotcrete”, a sprayed concrete that sets as soon as it hits the walls, and drilling steel anchors that reached 12 metres into surrounding rock: “If we didn’t do this, the whole thing would collapse whilst we were building it. We constantly monitored any movement with a host of instruments and adjusted the support as necessary.”

“Workers on the site were lowered down the shaft in a lift, working on a system of ropes.”

For the workers on the site, another exciting yet daunting nature of working on the excavation was descending into the CMS cavern in the lift. During the construction period, access underground was via a lift cage being lowered down the shaft on a system of ropes. “This was good as it meant you could always be lowered to exactly the right level, as opposed to fixed lifts,” explains John. “But being on a rope also meant that it had a tendency to sway as you went down. And 100 metres is a long way!”

As the environment 100 metres below the surface is also full of water, the final stages involved waterproofing, installing drainage systems and painting the cavern, as water could otherwise turn soft rock into mud. “Once everything was in place we could seal off the cavern with waterproofing and put in a permanent concrete wall up to 4 metres thick, reinforced with steel bars.”

Throughout the whole construction, consideration for the environment was at the forefront of people’s minds. In order to keep noise levels to a minimum, sound barriers were built all around the site. And instead of removing the many tonnes of earth and rock excavated from the site, causing noise and road disruption, it was deposited right by the buildings, covered with fresh soil and planted with vegetation, creating a now flourishing artificial hill.

Whilst this was going on, thanks to the “pre-packaged” design of CMS, split up into 15 slices, where each is assembled and as near to complete as possible on the surface, work on building the detector could carry on this whole time. And once the cavern was complete, in 2005, pieces of CMS could be lowered underground and installed.

“The CMS caverns within the spongy earth are like bubbles in water, rising at a rate of one millimetre per year.”

But though the civil engineering stage of building CMS is long over, the underground nature of the experiment must always be taken into account. Though the detector weighs almost as much as the soil and rock it replaced, the caverns within the spongy earth are like bubbles in water, and they could potentially rise by as much as one millimetre (mm) per year. Geologists predict that CMS, along with the immediately surrounding sections of the LHC machine, will rise 15 mm over 10 years. This may seem small, but when you think that the detector’s tracker and muon systems, for instance, must align to within 0.15 mm, one hundredth of the distance, this small amount becomes significant. In fact the ability to adjust by this amount is built into the detector and movement will be monitored throughout the life of the experiment, so civil engineering continues to play a part in the running of CMS.
http://cms.web.cern.ch/cms/Detector/...struction.html

thay đổi nội dung bởi: co1972nguyen, 17-12-2009 lúc 02:21 PM
co1972nguyen vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn
The Following 4 Users Say Thank You to co1972nguyen For This Useful Post:
Danh_Sirus (07-09-2011), sumiscute (06-09-2011), trungdanh09 (20-02-2011), umy (07-09-2011)
Old 20-07-2010   #2
hung12li
Thành viên mới
 
Tham gia ngày: Jul 2010
Bài gởi: 6
Thanks: 0
Thanked 8 Times in 2 Posts
Default Ðề: Wall of ice -Một biện pháp thi công mới

Công nghệ thi công bằng phương pháp đông đá:
Nhờ đặc tính có thể chịu lực của đất ẩm khi đóng đá (đất dính từ 600 - 800 KN/m², đất dời từ 1200 đến 1400 KN/m²) người ta có thể sử dụng nó để làm tường chắn nước hoặc tường chịu lực trong thi công các công trình ngầm. Người ta có thể dùng ni tơ lỏng hoặc chất dẫn nhiệt thông thường như trong tủ lạnh. Thường cả hai được kết hợp: ban đầu dùng ni tơ để giảm thời gian thi công vì nito đông rất nhanh, sau đó biến công trường thành một cái tủ lạnh khổng lồ (thực ra nhiệt độ không khí không thay đổi đáng kể, công nhân không hề phải mặc áo bông khi di làm.) Tùy theo yêu cầu lĩ thuật, khối đá có thể dày từ 2 đến 3 m.
Gừi kèm một số hình ảnh, hiện ở Đức có một vài công trình lớn sử dụng phương pháp này, VD: ga tàu điện ngầm U55, ga Leipzig.





Tài liệu các bác có thể tìm trên Wiki, khá phổ biến.
hung12li vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn
The Following 6 Users Say Thank You to hung12li For This Useful Post:
co1972nguyen (20-07-2010), Danh_Sirus (07-09-2011), lastdayvn (07-09-2011), sumiscute (06-09-2011), trungdanh09 (20-02-2011), umy (07-09-2011)
Old 07-09-2011   #3
umy
Administrator
 
umy's Avatar
 
Tham gia ngày: Feb 2009
Bài gởi: 6,242
Thanks: 7,056
Thanked 14,265 Times in 4,564 Posts
Default Ðề: Wall of ice -Một biện pháp thi công mới

Trích:
Nguyên văn bởi co1972nguyen View Post

Vừa qua tôi có xem phim về quá trình xây dựng nhà máy LHC này, trong quá trình thi công họ có xử lý mạch nước ngầm áp lực mạnh, ở sâu bằng cách dùng bức tường đá (wall of ice) và thấy đây là ý tưởng hay có bài viết bằng tiếng Anh kèm theo
Bác nào biết và có tài liệu về biện pháp này cho xin tham khảo, trao đồi thêm

Chùm proton đã “lên đường” trong máy gia tốc LHC
Bài viết cập nhật lúc: 03:24 ngày 23/11/2009
Khoảng 10 giờ tối thứ sáu, 20/11/2009, bên ngoài thành phố Geneve, các nhà khoa học của Trung tâm Nghiên cứu Hạt nhân châu Âu, viết tắt là CERN, đã thành công trong việc phóng một chùm proton theo chiều kim đồng hồ vào “con đường đua” từ tính, đặt ngầm dưới mặt đất dài 17 dặm, của chiếc máy gia tốc hạt LHC, một thiết bị nghiên cứu vật lý lớn nhất và đắt nhất thế giới.

Constructing a cavern for a giant

Between 1998 and 2005 a total of almost 250,000 m3 of soil and rock was excavated from the CMS site at “Point 5” of the LHC, in Cessy. The contractors - Seli, an Italian company and Dragados, Spanish - had previously worked on the Madrid metro but here faced some unique surprises.

It started with an unexpected find: “We did trial pits around the site, because the archaeology of an area is always something we have to consider, and what we found was great – a Roman villa, complete with pots, tiles and coins,” explains John Osborne, project manager of CMS civil engineering. “And even better for us was that it wasn’t anywhere near any planned shafts or buildings.”

They were able to leave archaeologists to spend a year thoroughly investigating the site whilst the project got underway. But it wasn’t an easy task. “Funnily enough Point 5 was one of he worst places possible to build the cavern in terms of geology, though best from a physics point of view. And CMS was pretty much the only experiment that could cope with being built here,” remarks John.

The first challenge came in the form of underground water tables approximately ten to twenty metres below the surface. To dig down through them the team had to first freeze the ground around the shafts to act as a barrier to the water. By drilling holes around each shaft’s circumference and pumping down brine, cooled to -25oC, the water froze into a 3-metre wall of ice. But the water coming from Cessy was moving even faster than predicted, and combined with the channelling effect of water between the two shafts, pressure built up until it penetrated the walls.

“Injecting the holes with liquid nitrogen at -195oC finally solved the problem.”

Injecting the holes with an even colder substance: liquid nitrogen, at less than at -195oC, finally solved the problem. With its help engineers formed a wall of ice around the shafts that was solid-enough for teams to keep on digging.

However, the problems were not over yet. Once the shafts were dug out, work had to begin on the caverns, but because the ground materials were so soft, with no intervention any cavern excavated would collapse. “At Point 5 there is only 15 metres of solid rock. For the first 75 metres of digging down it’s just a type of glacial deposit called moraine - basically a mixture of sand and gravel,” explains John. “And the rock we did have was a kind of soft sandstone called Molasse. A large cavern built in this would just collapse.”

The solution was to build a large supporting structure underground that could hold up the caverns and withstand the mass of the soil above it. Engineers envisaged a concrete pillar as the divider between the two caverns that could do just this.

“Knowing we would have to build this structure anyway, we asked radiation teams how thick we’d need it to be to protect people from radiation in the cavern next-door to the experiment,” explains John. “They gave the figure at 7 metres. The width needed to ensure adequate support for the caverns was 7.2 metres, so this worked out very well, and in fact the second cavern can now be safely used when the machine is on.”

After the these delays, engineers experimented with using explosives to clear away rock at a faster rate, but in the end it had little benefit for a big disruption. Instead the best trick seemed to be to excavate small sections at a time and immediately install “shotcrete”, a sprayed concrete that sets as soon as it hits the walls, and drilling steel anchors that reached 12 metres into surrounding rock: “If we didn’t do this, the whole thing would collapse whilst we were building it. We constantly monitored any movement with a host of instruments and adjusted the support as necessary.”

“Workers on the site were lowered down the shaft in a lift, working on a system of ropes.”

For the workers on the site, another exciting yet daunting nature of working on the excavation was descending into the CMS cavern in the lift. During the construction period, access underground was via a lift cage being lowered down the shaft on a system of ropes. “This was good as it meant you could always be lowered to exactly the right level, as opposed to fixed lifts,” explains John. “But being on a rope also meant that it had a tendency to sway as you went down. And 100 metres is a long way!”

As the environment 100 metres below the surface is also full of water, the final stages involved waterproofing, installing drainage systems and painting the cavern, as water could otherwise turn soft rock into mud. “Once everything was in place we could seal off the cavern with waterproofing and put in a permanent concrete wall up to 4 metres thick, reinforced with steel bars.”

Throughout the whole construction, consideration for the environment was at the forefront of people’s minds. In order to keep noise levels to a minimum, sound barriers were built all around the site. And instead of removing the many tonnes of earth and rock excavated from the site, causing noise and road disruption, it was deposited right by the buildings, covered with fresh soil and planted with vegetation, creating a now flourishing artificial hill.

Whilst this was going on, thanks to the “pre-packaged” design of CMS, split up into 15 slices, where each is assembled and as near to complete as possible on the surface, work on building the detector could carry on this whole time. And once the cavern was complete, in 2005, pieces of CMS could be lowered underground and installed.

“The CMS caverns within the spongy earth are like bubbles in water, rising at a rate of one millimetre per year.”

But though the civil engineering stage of building CMS is long over, the underground nature of the experiment must always be taken into account. Though the detector weighs almost as much as the soil and rock it replaced, the caverns within the spongy earth are like bubbles in water, and they could potentially rise by as much as one millimetre (mm) per year. Geologists predict that CMS, along with the immediately surrounding sections of the LHC machine, will rise 15 mm over 10 years. This may seem small, but when you think that the detector’s tracker and muon systems, for instance, must align to within 0.15 mm, one hundredth of the distance, this small amount becomes significant. In fact the ability to adjust by this amount is built into the detector and movement will be monitored throughout the life of the experiment, so civil engineering continues to play a part in the running of CMS.
http://cms.web.cern.ch/cms/Detector/...struction.html
Xem thêm:

http://public.web.cern.ch/public/en/LHC/LHC-en.html

Nơi đây làm việc với nhiều người giỏi ở các nước, Tiếng Anh chính thức để giao lưu. Vùng Thụy sỉ nầy nói tiếng Pháp!

Khoãng 2001 tôi có đến công tác và thuyết trình tai đây, Khoãng 60 chuyên gia đến dự, bên lề họ nói nhiều thứ tiếng Anh, Pháp, Đức, Nga, Ba Lan ... Sau đó có tiếp xúc thêm với các đồng nghiệp tại đó.

Thấy có nhiều Kỹ sư, cử nhân trẻ ... vào làm nghiên cứu và luận án nơi đây. Trong thời gian từ 2 đến 5 năm. Rất nhiều người thích muốn.

Vì thế có lời khuyên Bạn nào học giỏi, can đảm xem kỷ trong Webseíte trên, có thể trực tiếp xin việc hoăc làm luận án TS ở đây đươc. Nộp thẳng vào chứ không có ai trung gian giúp đở.
umy vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to umy For This Useful Post:
Danh_Sirus (07-09-2011), rongthieng (28-09-2011)
Old 07-09-2011   #4
Danh_Sirus
Thành viên rất tích cực
 
Danh_Sirus's Avatar
 
Tham gia ngày: May 2011
Bài gởi: 244
Thanks: 379
Thanked 64 Times in 45 Posts
Default Ðề: Wall of ice -Một biện pháp thi công mới

Trích:
Nguyên văn bởi hung12li View Post
Công nghệ thi công bằng phương pháp đông đá:
Nhờ đặc tính có thể chịu lực của đất ẩm khi đóng đá (đất dính từ 600 - 800 KN/m², đất dời từ 1200 đến 1400 KN/m²) người ta có thể sử dụng nó để làm tường chắn nước hoặc tường chịu lực trong thi công các công trình ngầm. Người ta có thể dùng ni tơ lỏng hoặc chất dẫn nhiệt thông thường như trong tủ lạnh. Thường cả hai được kết hợp: ban đầu dùng ni tơ để giảm thời gian thi công vì nito đông rất nhanh, sau đó biến công trường thành một cái tủ lạnh khổng lồ (thực ra nhiệt độ không khí không thay đổi đáng kể, công nhân không hề phải mặc áo bông khi di làm.) Tùy theo yêu cầu lĩ thuật, khối đá có thể dày từ 2 đến 3 m.
Gừi kèm một số hình ảnh, hiện ở Đức có một vài công trình lớn sử dụng phương pháp này, VD: ga tàu điện ngầm U55, ga Leipzig.





Tài liệu các bác có thể tìm trên Wiki, khá phổ biến.
thú vị thật đấy !
__________________
SV ĐH kỹ thuật-công nghệ HCM
Sống không dê==>Chết thành bêđê
Danh_Sirus vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn
Loading...
Trả lời

Ðiều Chỉnh
Xếp Bài

Quyền sử dụng ở Diễn Ðàn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Mở

Chuyển đến



Múi giờ GMT. Hiện tại là 08:36 AM.


DIỄN ĐÀN http://ketcau.com/forum NƠI HỘI TỤ CỦA CÁC KỸ SƯ KẾT CÂU VIỆT NAM
WWW.KETCAU.COM - CẦU NỐI CỦA CÁC KỸ SƯ KẾT CẤU CÔNG TRÌNH, ĐỊA KỸ THUẬT VIỆT NAM. DIỄN ĐÀN ĐƯỢC MUA BẢN QUYỀN CỦA JELSOFT ENTERPRISES Ltd. Thiết kế website